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Abstract 

The aim of this paper is to develop a finite element procedure for crack prediction in vibrating beams. Based 

on this procedure, full frictional contact conditions are introduced between the crack surfaces in order to 

consider the breathing of crack. The region surrounding the crack is simulated by two-dimensional finite 

elements. An incremental-iterative procedure is employed to solve the nonlinear dynamic equations governing 

this problem. The obtained time response is processed with Fast Fourier Transform to extract its frequency 

components. The first three natural frequencies are input to a trained Artificial Neural Network for depth and 

position prediction of the crack. This study is validated for a dynamic loading cantilever beam. It is found that 

the proposed procedure is capable of predicting the crack depth and position with high accuracy. 
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1. INTRODUCTION

 

Beams are used as members in many engineering 

applications. For various causes, these members often 

experience cracks under working conditions. The 

existence of cracks in beams causes variations in 

stiffness. These variations have influence on the 

dynamic behavior of the total structure. Thus, the 

detection of cracks in beams is of utmost importance 

in structural safety assessment. Direct procedures, 

based, for example, on acoustic, magnetic field, 

radiography, have been employed for this purpose. 

However, most of these procedures are inoperative 

and unsuitable, since they require time-consuming 

and expensive inspections [1]. For these reasons, 

during the past decades, the research interest has 

turned to alternative procedures in crack detection 

utilizing vibration parameters [2]. 

Artificial Neural Networks (ANN) method is a 

mathematical model inspired by the human brain 

operation. Due to its ability to approximate 

continuous functions and to recognize patterns, ANN 

is used to detect cracks from modal parameters. The 

basic concept for utilizing ANN in crack detection is 

the development of a model to relate, via a training 

process, the modal parameters with structural 

parameters. When the relation is set up, the trained 

ANN can identify the cracks position and depth from 

modal data. In 1992, Wu and co-workers [3] reported 

for first time the successful application of ANN in 

crack detection utilizing modal parameters. Since 

then, many researchers have concluded the potential 
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of ANN for crack detection in beam-like structures 

[4-8]. 

In the aforementioned studies, the cracks are 

considered continuously open during vibration. In 

fact, the cracks breathe or in other words open and 

close regularly causing variations in the beams 

stiffness which lead the beams to nonlinear dynamic 

behavior [9]. This behavior generates higher 

frequency harmonics. In particular, the natural 

frequencies of beams with a breathing crack are 

higher than those of beams with an always open crack 

[10]. Thus, vibration-based methods for crack 

detection should include breathing crack effects in 

order to give precise conclusions concerning the state 

of crack. However, the development of a realistic 

breathing crack model is a complicated problem [11]. 

The crack contact state, intermediate between those 

of fully open and fully closed, can be treated only 

with a numerical implementation. Ma et al. [12] 

treated the breathing crack effect as a frictionless 

contact problem between a rigid and an elastic 

surface. Long et al. [13] developed a finite element 

model for a beam with a breathing crack considering 

that the bending stiffness of beam varies periodically 

when crack opens and closes during vibration. In 

authors’ previous work [11], a finite element model 

for a vibrating beam, considering the crack surfaces 

contact, was presented. 

This two-dimensional finite element model in 

conjunction with Fast Fourier Transform (FFT) and 

Artificial Neural Networks (ANN) compose a finite 

element procedure for crack prediction in vibrating 
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beams. In particular, full frictional contact conditions 

are involved between the crack surfaces to consider 

the breathing of crack, while the beam is simulated by 

two-dimensional finite elements. An incremental-

iterative procedure is utilized to solve the nonlinear 

equations of this dynamic problem. The obtained 

response is converted from time-domain to 

frequency-domain employing FFT. The first three 

natural frequencies are applied as input in a feed-

forward multi-layer perceptron ANN. This study is 

validated for an impulsive loading cantilever beam. It 

is deduced that the crack characteristics, depth and 

position, are predicted with a high accuracy compared 

to the actual ones. 

 

2. FINITE ELEMENT PROCEDURE 

 

2.1. Cracked beam model 

In what follows, the Euler-type two-dimensional 

cantilever beam model of Figure 1 is considered. The 

beam has length L  and cross-section hb  . At a 

position cL  from its fixed end, the beam contains a 

non-propagating edge crack of depth a . The surfaces 

of the crack are considered smooth and the thickness 

of the crack negligible. A transverse dynamic loading 

is applied at the tip node A . It is considered that the 

beam is made of a linear elastic material and 

undergoes small displacements and strains. The beam 

is simulated by conventional finite elements as shown 

in Fig. 2. For reasons of accuracy and compatibility, 

the two equal length surfaces of the crack are 

discretized into uniformly spaced three-noded 

triangular elements. The region surrounding the crack 

is simulated by three-noded triangular elements. The 

density of these elements is very high around the 

crack surfaces and crack tip in order to satisfy the 

contact conditions when partial crack closure occurs. 

The remaining beam region is discretized into four-

noded quadrilateral elements performing as transition 

elements. 

 

2.2. Crack surfaces contact 

Parts of the crack surfaces SI  and SII  may come 

into contact at an interface Sc , defined as 

SSS IIIc = (Figure 3). The extent of this interface 

may vary during the interaction of structure and load. 

It is usually composed of a slipping part and an 

adhesive part. In this study, the prediction of this 

interface is based on the master-slave concept. Based 

on this concept, the SI  is assumed as master surface 

and the SII  as slave surface. These two surfaces are 

defined in terms of local coordinate systems 

( 𝑥𝐽 1, 𝑥𝐽 2), where Ij =
 
corresponds to the master 

surface and IIj=
 
to the slave surface. Subscripts 1  

and 2 represent the tangential and normal directions, 

respectively, to the crack surfaces. Both axes 𝑥𝐽 2 

define the direction of the unit outward normal vector 

of the corresponding surfaces, while the 

corresponding axes 𝑥𝐽 1 define the slipping direction. 

The nodes on the master and slave surfaces are 

termed, respectively, as master nodes and slave 

nodes. The contact surface of the master body is 

covered by contact (master) segments which are 

defined by two adjacent master nodes. Contact occurs 

between a node of the slave surface and a point of the 

master surface that may be located at an edge, a point 

or a node of the master segment. A master segment 

can come into contact with not only one slave node at 

each time. On the contrary, a slave node can come 

into contact with only one point on the master 

segment.  

 
Fig. 1. Cantilever beam model 

 

 
Fig. 2. Typical cracked beam finite element mesh 

8.0/( =ha  and )5.0/ =LLc  
 

The contact conditions, for each contact pair, are 

defined in terms of a local coordinate system in the 

direction of the average normal to the boundaries of 

the bodies. In what follows, iu  and iR , with 2,1=i  

represent, respectively, nodal displacement and force 

components. These components are expressed in 

respect to the local coordinate systems ),( 2
J

1
J xx , 

with II,Ij = (Fig. 3). For simplicity, the subscripts 

which represent nodal numbers are omitted. The force 

components satisfy the following equilibrium 

equations: 

                     
.2,1,0III ==+ iRR ii                     (1) 

The traction-free conditions for the open crack state 

are: 

       
.2,1,0III === iRR ii    

          (2) 

For the adhesion state, the displacement components 

are related by the equations: 

                            
.01

II
1

I =+ uu                              (3) 
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Fig. 3. Crack surfaces contact [11] 

 

In case there is an initial normal gap 0g  between 

the master and slave nodes of a pair, the displacement 

components along this direction are: 

          0
2

II
2

I guu =+ ,                    (4) 

For the slip state, the tangential and normal force 

components are related by the equations:  

             02
I

1
I = RR  ,                            (5) 

where   the coefficient of Coulomb friction. 

Furthermore, the equation (4) is valid, since the slip 

allows the occurrence of a gap between the crack 

surfaces.  

 

2.3. Incremental-iterative procedure 

The nonlinear dynamic behavior of the beam 

model is described by the equations: 

         RKUUCUM =++  .          (6) 

In the above equations, M is the mass matrix, C  
is the damping matrix and K  is the stiffness matrix. 

The superimposed dot represents derivative with 

respect to time. Thus, U  is the nodal accelerations 

vector, U  is the nodal velocities vector, U  is the 

nodal displacements vector and R is the external 

forces vector. These vectors are defined in respect of 

a global Cartesian coordinate system zyx ,, . 

 An implicit direct integration scheme is utilized 

to solve the nonlinear equations (6). According to this 

scheme, the solution time interval of interest ],0[ T  is 

subdivided into N  equal time increments tΔ , where 

NTt =Δ . Approximate solutions of equations (6) 

are sought at times Tttttt ,,Δ,,,Δ2,Δ,0  + . 

The solution at a specific time requires that the 

solutions of all previous times are known. Based on 

the modified Newton-Raphson method, for time 

tt Δ+  and iteration k  the equations (6) are written 

as [14]: 

     
)1()( ΔΔ −= kk

T
t

RUK ,          (7) 

             .Δ )()1(Δ)(Δ kkttktt
UUU += −++                (8) 

In the above two equations, T
t
K

 
is a linear 

combination of the mass matrix, damping matrix and 

tangential stiffness matrix. )(Δ k
U  is the incremental 

nodal displacement vector and 
)1(Δ −k

R  is a function 

of the nodal force vector and contributions from the 

damping and inertia of the system. In each iteration, 

the incremental displacement vector )(Δ k
U  is 

derived by solution of equations (7), since the vector 
)1(Δ −k

R is known from the most recent 

displacements and the matrix T
t
K

 
is also known for 

the calculations of the time t . The vector )(Δ ktt
U

+  is 

obtained from equations (8). To calculate 

displacement and force vectors for time tt Δ+ , the  

equations (1)-(5) are written in incremental form [11]. 

Then, they are transformed in respect to a global 

coordinate system zyx ,,  and assembled in 

equations (7) and (8). Initially, the employed iterative 

procedure considers the convergent contact status of 

the previous time t . Furthermore, it considers that the 

incremental force components for master surface at 

time tt Δ+  are zero. The contact state for each node 

pair is examined and appropriate changes are 

implemented to identify the equilibrium state of the 

contact conditions [11]. The incremental vectors 

UΔΔtt+  and RΔΔtt+
 are known for the total 

structure, when the iterative procedure converges. 

Then, the procedure goes to the next time increment 

and continues until the final one is reached. The 

obtained time response is processed with FFT to 

extract its frequency components [15]. 

 

2.4. Artificial neural networks 

According to John McCarthy, Artificial 

Intelligence (AI) is "the science and engineering of 

making intelligent machines" [16]. ANN is a type of 

AI that is inspired by the structure and function of the 

human brain. Key properties of ANN are the 

capability of pattern recognition and classification, 
data interpretation and function approximation. ANN 

provides a nonlinear parameterised mapping between 

input and output data. The networks are arranged in 

layers of input, hidden and output neurons, which are 

massively interconnected. The layers are linked by 

transfer functions and the neurons weighted by 

adjustable variables. There are many different ANN 

types with different topologies. The most widely used 

networks in crack detection are feed-forward multi-

layer perceptron (MLP).    

 
 

Fig. 4. Schematic diagram of a three-layered MLP 

network 
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Figure 4 shows a MLP network with layers ji,  

and k  and interconnection weights ijW  
and jkW

between the layers of the neurons. In the training 

process, the initial assigned weights are continuously 

corrected. In particular, the predicted outputs 

(obtained from MLP) are compared with the real ones 

and the errors are back propagated (from right to left 

in Figure 4). Based on this algorithm, the weights are 

corrected or adjusted and the errors are minimized. In 

the present study, the adjusting of weights is 

performed with Levenberg-Marquardt algorithm [17, 

18]. 

 

3. NUMERICAL RESULTS 

 

The present method is assessed for the beam 

model of Figure 1. It is considered that the beam has 

a length of m1.5=L  and a cross-section of

23 m10625.5m075.0m075.0 −==hb . The 

adopted beam material is carbon steel with modulus 

of elasticity Pa1006.2 11=E , mass density 

3kg/m7650= and Poisson’s ratio 29.0= . Four 

different dimensionless crack positions are 

considered, 8.0,6.0,4.0,2.0=LLc . For each one of 

these positions, the dimensionless crack depths 

8.0,6.0,4.0,2.0/ =ha
 

are investigated. Lower 

depths )2.0( ha  are not considered, since small 

cracks have a slight influence on the vibration-based 

crack detection methods [19]. The beam undergoes a 

transverse impulse loading of N100
 
at point A , 

from time 0=t  to time tt Δ=  (Figure 1). The 

transverse acceleration response is acquired from 

node B  which is at a dimensionless position 

1=LLr  
from the fixed end (at position of point  

A ). For all considered cracked beams, the 

corresponding finite element meshes consist of 

approximately the same number of each type of 

elements and nodes. For instance, the mesh of a beam 

with a crack of 8.0/ =ha  and 5.0/ =LLc  
is 

composed of 1002  three-noded triangular 201  four-

noded quadrilateral elements and 797  nodes. 

Numerical experimentations demonstrate that higher 

densities of elements in the vicinity of the crack have 

slight influence on the results (less than %1 ). For the 

beam without the crack, the finite element mesh 

consists of 160  uniform four-noded quadrilateral 

elements and 205  nodes. The damping loss factor 
 

)( 0C =
 
is ignored, since it is very small for all the 

carbon steel beams considered in this study. This 

factor affects mainly the magnitude of the modal 

analysis, performed below. The natural frequencies 

are nearly unaffected. Initially, (at time 0=t ), the 

nodal displacements, velocities and accelerations 

vectors are assumed as 0UUU ===  000
. The 

Newmark method, which is commonly used in time 

integration schemes, is employed with 21δ =  and 

41α = . The time increment is considered as 

sec101Δ 5−=t . Convergence studies show that 

smaller time increments have a slight influence on the 

results (less than %1 ). A sensitivity analysis 

demonstrates that, for the considered smooth crack 

surfaces, the results are influenced less than %5.0  by 

the coefficient of friction. Thus, the results presented 

below for 1.0=
 
should be reasonably unaffected 

for most of the considered crack cases. Equations (8) 

are solved again and again until the convergence 

criterions satisfied [11]. For all considered cracked 

beams, the maximum three iterations are required 

between two subsequent sequences. This happens due 

to the small crack surfaces and the dense finite 

element mesh in vicinity of the crack. The impulsive 

transverse acceleration response at node B  is 

analyzed with FFT in order to extract its frequency 

components. For reasons of comparisons, the linear 

dynamic problems of the beam without and an always 

open crack are considered. These two problems are 

solved using the above finite element procedure 

ignoring equations (1)-(5). 

To show the accuracy of the present study, the 

first three natural frequencies of beams without crack 

and with an open or a breathing crack of 5.0=LLc  
and  5.0/ =ha  are extracted from the FFTs of 

corresponding impulsive responses. For the first two 

cases comparisons are performed with the results 

obtained from an eigenvalue finite element procedure 

[14], while for the third case with the results reported 

in the work of Nandwana and Maiti [20]. The 

maximum percentage difference, for all considered 

cases does not exceed %61.1 . 

Figure 5 shows the FFTs of the impulsive 

responses for a beam with either an open or a 

breathing crack of 2.0/ =ha
 
and 2.0=LLc . The 

three vertical lines correspond to the loci of the first 

 
Fig. 5.  FFT of impulsive response for a crack of 

2.0/ =ha  and 2.0/ =LLc  
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three natural bending frequencies of the noncracked 

beam, obtained from FFT of the corresponding 

impulsive response. It is observed that the first two 

natural frequencies of these two crack models are 

close and are lower than those of the intact beam. The 

third frequency of the breathing crack model is 

between those of the open cracked model and the 

intact beam, as expected [10]. The identification of 

the primary peaks for the breathing model requires 

further investigation, which is out of the scope of this 

work. They are caused by crack contact and 

vibrations of the fractured beam and beam portions 

aside the crack. 

For all considered crack cases, the first three 

dimensionless natural frequencies iuic ff  of the 

faulty beams are extracted from FFTs of the 

corresponding impulsive responses. The subscript 

3,2,1=i  denotes the order of the natural frequency 

and subscripts cu,  the noncracked and cracked state 

of the beam, respectively. The natural frequencies are 

the inputs to the ANN and the crack depth and 

position the outputs. Many ANN models were tested. 

In each model, a different number of hidden layers 

with various numbers of neurons were used. The 

effect of transfer functions was also investigated. 

Apart from the input and output layers, the designed 

ANN has two hidden layers. The first of these two 

hidden layers contains 30 neurons and the second 15 

neurons. The tangent sigmoid transfer function is 

applied to all layers. The ANN model was designed 

and implemented using the Matlab neural network 

toolbox with Levenberg–Marquardt algorithm. The 

regression analysis of training, validation and test 

data is shown in Figure 6 which shows that predicted 

data are well fitted to the actual ones. In particular, 

the absolute percentage difference between these two 

set lies between 0% and 4.9% (Table 1). 

 

 

 

 

 
           (a) 

 

 
         (c) 

 
           (b) 

 

 
          (d)

Fig. 6. Regression plot of: (a) training, (b) validation, (c) testing and (d) general set 
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Table 1. Comparisons between actual and predicted crack characteristics 

Actual Predicted Percentage differences 

(%) ha /  LLc /  ha /  LLc /  ha /  LLc /  

0.2 0.2 0.2000 0.2006 0 0.3 

0.2 0.4 0.3999 0.2000 0 0 

0.2 0.6 0.6000 0.2000 0 0 

0.2 0.8 0.7989 0.2000 -0.1 0 

0.4 0.2 0.2000 0.4000 0 0 

0.4 0.4 0.3999 0.4000 0 0 

0.4 0.6 0.6000 0.4000 0 0 

0.4 0.8 0.7999 0.3804 0 -4.9 

0.6 0.2 0.2000 0.6000 0 0 

0.6 0.4 0.3999 0.6000 0 0 

0.6 0.6 0.6000 0.6000 0 0 

0.6 0.8 0.7999 0.6000 0 0 

0.8 0.2 0.2000 0.7999 0 0 

0.8 0.4 0.4000 0.8000 0 0 

0.8 0.6 0.6150 0.8000 2.6 0 

0.8 0.8 0.7999 0.8000 0 0 

4. CONCLUSIONS 

 

A finite element procedure for crack prediction in 

vibrating beams is formulated in this paper. Based on 

this procedure, full frictional contact conditions are 

involved between the crack surfaces to consider the 

breathing of crack, while the beam is simulated by 

two-dimensional finite elements. Αn incremental-

iterative procedure is employed to treat the nonlinear 

dynamic equations for this model. The extracted 

response is converted from time-domain to 

frequency-domain using Fast Fourier Transform. The 

first three natural frequencies are applied as input in a 

feed-forward multi-layer perceptron Artificial Neural 

Network for prediction of crack characteristics. The 

present study is validated for a cracked cantilever 

beam under an impulse loading. It is deduced that the 

crack depth and position are predicted with a high 

accuracy (around 5%) compared to the actual ones. 
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